If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2=16384
We move all terms to the left:
x^2-(16384)=0
a = 1; b = 0; c = -16384;
Δ = b2-4ac
Δ = 02-4·1·(-16384)
Δ = 65536
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{65536}=256$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-256}{2*1}=\frac{-256}{2} =-128 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+256}{2*1}=\frac{256}{2} =128 $
| 25x^2=-81 | | F(x)=x2-3x-12 | | 2x3/4=686 | | (2x+35)+(x+10)=180 | | -4(2w+8)=32 | | (2x-5)/3+(x/4)=1 | | 8x+6+15x+13=180 | | 8x+615x+13=180 | | (x-54)/(x-69)=2.1 | | -1+3x+3=x-4 | | (2x+1)(1/3x-1)=0 | | 5p=-2(2/3)+3 | | 3(2x1)=93 | | 2/3x+(2x+1)(1/3x-1)=0 | | (2x+5)/3=x+1 | | 2x+5/3=x+1 | | 4-3x5=8 | | 1.2/3x+(2x+1)(1/3x-1)=0 | | 7x+5=1x-17 | | 2-m+14=0 | | 8x-3x+9=4x-1 | | 1x-2.1x=68.5 | | x2+6x−12=0 | | -x-10=90 | | 2(2x+4)=-144 | | -d+29=-5(7d+7)-4 | | -4x+24=24 | | –2.6d+9.1=–9.49−7.3d−9.61d | | -3(x+1)/5=x7 | | 3^5x3^x=3^8. | | 3^5*3^x=3^8. | | -2.6d+9.1=-9.49-7.3d-9.61 |